Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 100\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\1.4\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.54\\1.04\\0.26\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.582\\3.946\\1.146\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.712\\5.142\\1.606\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.38\\12.82\\3.888\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}25.99\\20.94\\6.495\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}44.69\\44.61\\13.64\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}91.98\\80.05\\24.7\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}168.6\\160.2\\49.14\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}332.7\\298.9\\92.01\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}626.3\\583.1\\179.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\0.6\\1.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.31\\0.71\\0.69\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.738\\2.254\\0.869\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.527\\3.37\\1.13\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.313\\7.688\\2.376\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}15.74\\13.26\\4.113\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}28.08\\27.24\\8.352\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}56.41\\49.99\\15.41\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}105.0\\98.6\\30.27\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}205.2\\185.7\\57.13\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}388.6\\360.1\\110.6\end{matrix}\right]\end{gather*}
Hide help