Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\2\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.0\\0.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.76\\0.52\\0.12\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.956\\0.7\\0.424\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.07\\1.418\\0.7836\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.359\\2.81\\1.601\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}17.0\\5.681\\3.237\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}34.51\\11.51\\6.564\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}70.0\\23.33\\13.31\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}142.0\\47.3\\26.99\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}287.9\\95.93\\54.75\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}584.0\\194.6\\111.0\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\1.1\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.44\\1.12\\0.79\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}7.003\\2.453\\1.327\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}14.39\\4.823\\2.76\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}29.25\\9.772\\5.566\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}59.36\\19.79\\11.29\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}120.4\\40.13\\22.9\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}244.2\\81.37\\46.44\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}495.3\\165.0\\94.17\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}1005.0\\334.7\\191.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}2037.0\\678.8\\387.4\end{matrix}\right]\end{gather*}