For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\0.7\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.52\\1.01\\1.05\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.361\\2.336\\1.604\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.4141\\3.828\\2.543\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.5898\\6.065\\3.984\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}0.9014\\9.511\\6.234\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}1.402\\14.89\\9.751\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}2.189\\23.28\\15.25\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}3.423\\36.41\\23.85\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}5.353\\56.95\\37.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}8.371\\89.06\\58.33\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.0\\1.8\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.68\\3.82\\2.72\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.722\\6.44\\4.29\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.005\\10.23\\6.728\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.526\\16.06\\10.53\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}2.369\\25.14\\16.47\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}3.698\\39.32\\25.76\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}5.782\\61.5\\40.28\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}9.041\\96.18\\62.99\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}14.14\\150.4\\98.52\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}22.11\\235.2\\154.1\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.