For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.0\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.24\\0.28\\0.02\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.354\\0.73\\0.342\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.7418\\1.552\\1.009\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.705\\3.312\\2.286\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.852\\7.253\\4.957\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.551\\16.04\\10.84\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}18.89\\35.51\\23.92\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}41.73\\78.56\\52.91\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}92.25\\173.7\\117.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}204.0\\384.0\\258.8\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\1.7\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.62\\4.46\\2.61\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.341\\10.17\\6.473\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}11.68\\22.37\\14.96\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}25.97\\49.16\\33.25\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}57.62\\108.5\\73.3\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}127.5\\239.9\\161.8\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}281.9\\530.6\\357.5\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}623.1\\1173.0\\790.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}1378.0\\2594.0\\1748.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}3046.0\\5735.0\\3865.0\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\5\end{bmatrix}$.