For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\1.9\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.52\\2.66\\2.87\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.462\\4.124\\4.032\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.61\\6.308\\6.168\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.69\\10.04\\9.434\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}19.93\\15.95\\14.94\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}33.29\\25.71\\23.73\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}54.97\\41.43\\38.17\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}90.17\\67.09\\61.49\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}147.3\\108.7\\99.51\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}240.2\\176.3\\161.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\1.0\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.06\\2.33\\1.64\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.732\\2.957\\3.357\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.333\\5.364\\4.516\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.65\\8.024\\7.876\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}17.56\\13.48\\12.01\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}28.87\\21.32\\19.92\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}47.15\\34.98\\31.7\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}76.91\\56.34\\51.81\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}125.2\\91.79\\83.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}203.7\\148.7\\136.0\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 100\\3\end{bmatrix}$.