Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 160\\3\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.1\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.18\\0.26\\0.27\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.413\\0.692\\0.506\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.8096\\1.502\\1.137\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.79\\3.321\\2.446\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.871\\7.235\\5.356\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.46\\15.8\\11.67\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}18.45\\34.48\\25.48\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}40.26\\75.24\\55.58\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}87.83\\164.2\\121.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}191.7\\358.2\\264.7\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\1.9\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.51\\4.46\\3.33\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.277\\9.788\\7.292\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}11.51\\21.46\\15.85\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}25.06\\46.82\\34.61\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}54.68\\102.2\\75.49\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}119.3\\223.0\\164.7\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}260.3\\486.6\\359.4\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}568.0\\1062.0\\784.3\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}1239.0\\2317.0\\1711.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}2704.0\\5055.0\\3734.0\end{matrix}\right]\end{gather*}