Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 180\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.7\\1.8\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.41\\1.32\\4.59\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.145\\3.282\\6.249\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}9.098\\5.624\\13.05\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}18.25\\10.38\\22.67\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}32.14\\18.89\\42.0\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}59.29\\34.42\\76.17\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}107.7\\62.76\\139.1\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}196.5\\114.4\\253.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}358.0\\208.5\\461.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}652.6\\380.0\\841.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.5\\0.7\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.06\\1.04\\2.38\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.374\\2.016\\4.402\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.225\\3.616\\8.056\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.37\\6.619\\14.63\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}20.68\\12.05\\26.72\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}37.74\\21.97\\48.67\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}68.77\\40.05\\88.73\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}125.4\\73.01\\161.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}228.5\\133.1\\294.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}416.5\\242.6\\537.4\end{matrix}\right]\end{gather*}