For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.6\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.88\\0.88\\0.27\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.55\\1.76\\0.223\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.911\\3.352\\0.2665\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.487\\6.351\\0.4243\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}10.36\\12.01\\0.7608\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}19.58\\22.7\\1.417\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}37.01\\42.91\\2.667\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}69.94\\81.09\\5.034\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}132.2\\153.3\\9.51\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}249.8\\289.7\\17.97\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\0.4\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.66\\0.72\\0.13\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.214\\1.392\\0.131\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.286\\2.642\\0.1869\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.315\\4.999\\0.322\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}8.152\\9.45\\0.5925\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.4\\17.86\\1.111\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}29.11\\33.76\\2.096\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}55.02\\63.8\\3.959\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}104.0\\120.6\\7.482\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}196.5\\227.9\\14.14\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 160\\5\end{bmatrix}$.
Hide help