For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.9\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.32\\1.85\\1.45\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.428\\2.323\\2.585\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.541\\4.084\\5.048\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.71\\7.687\\9.737\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}24.56\\14.77\\18.81\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}47.44\\28.49\\36.33\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}91.63\\55.02\\70.17\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}177.0\\106.3\\135.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}341.8\\205.2\\261.7\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}660.2\\396.4\\505.5\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.7\\1.0\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.68\\1.5\\1.89\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.852\\2.956\\3.758\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}9.457\\5.674\\7.231\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}18.25\\10.96\\13.97\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}35.24\\21.16\\26.99\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}68.07\\40.87\\52.12\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}131.5\\78.94\\100.7\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}253.9\\152.5\\194.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}490.4\\294.5\\375.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}947.2\\568.7\\725.3\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\3\end{bmatrix}$.