Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\2\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.9\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.2\\1.6\\2.98\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.456\\2.974\\4.95\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}11.55\\5.402\\8.368\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}20.14\\9.607\\14.25\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}34.85\\16.86\\24.34\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}60.12\\29.33\\41.69\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}103.6\\50.78\\71.48\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}178.2\\87.66\\122.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}306.4\\151.0\\210.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}526.7\\259.9\\361.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\1.8\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.89\\2.3\\1.1\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.605\\3.149\\2.169\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.424\\4.575\\4.029\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.21\\6.984\\7.243\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}20.38\\11.08\\12.78\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}34.39\\18.06\\22.32\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}58.43\\30.0\\38.73\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}99.69\\50.46\\66.93\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}170.5\\85.55\\115.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}292.2\\145.8\\198.7\end{matrix}\right]\end{gather*}