For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\0.1\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.0\\0.82\\0.29\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.126\\0.809\\0.93\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.182\\1.69\\1.418\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.598\\2.638\\2.521\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.3\\4.587\\4.183\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.79\\7.659\\7.109\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}26.6\\12.98\\11.97\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}44.95\\21.89\\20.23\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}75.86\\36.97\\34.14\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}128.1\\62.4\\57.65\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\0.9\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.61\\1.78\\1.84\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.303\\3.081\\2.889\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}10.7\\5.212\\4.828\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}18.07\\8.807\\8.137\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}30.52\\14.87\\13.73\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}51.52\\25.1\\23.19\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}86.98\\42.37\\39.14\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}146.8\\71.54\\66.08\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}247.9\\120.8\\111.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}418.5\\203.9\\188.3\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\1\end{bmatrix}$.