For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.9\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.7\\1.13\\0.99\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.026\\1.625\\3.425\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.101\\2.595\\7.566\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.726\\4.381\\14.47\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}15.14\\7.577\\26.26\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}26.46\\13.23\\46.71\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}46.39\\23.2\\82.43\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}81.43\\40.72\\145.1\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}143.0\\71.51\\255.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}251.2\\125.6\\448.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.0\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.26\\0.05\\0.54\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.344\\0.14\\0.851\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.6006\\0.2875\\1.299\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.08\\0.535\\2.104\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.925\\0.9604\\3.56\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}3.404\\1.701\\6.157\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}5.995\\2.997\\10.75\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}10.54\\5.271\\18.84\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}18.53\\9.264\\33.08\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}32.56\\16.28\\58.09\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.