Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 180\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\0.6\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.56\\1.34\\1.06\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.598\\1.918\\2.528\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.485\\3.837\\4.599\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}14.46\\7.907\\8.938\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}28.41\\15.52\\17.85\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}56.23\\30.49\\35.25\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}111.0\\60.23\\69.45\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}219.0\\118.9\\137.1\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}432.1\\234.6\\270.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}852.8\\463.0\\533.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.7\\0.2\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.48\\0.66\\0.78\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.586\\1.514\\1.568\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.115\\2.826\\3.28\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.25\\5.505\\6.427\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}20.19\\10.95\\12.6\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}39.79\\21.63\\24.91\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}78.54\\42.64\\49.19\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}155.0\\84.16\\97.05\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}305.9\\166.1\\191.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}603.7\\327.8\\377.9\end{matrix}\right]\end{gather*}