For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.7\\0.1\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.57\\0.52\\0.9\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.317\\1.573\\0.968\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.377\\2.004\\2.089\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.062\\4.046\\3.671\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.395\\7.129\\6.418\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}13.11\\12.56\\11.58\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}23.36\\22.56\\20.56\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}41.66\\40.1\\36.65\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}74.22\\71.49\\65.35\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}132.3\\127.4\\116.4\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\1.4\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.2\\0.56\\0.8\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.576\\1.616\\1.712\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.127\\3.202\\2.557\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.53\\5.094\\4.904\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.745\\9.525\\8.636\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}17.5\\16.83\\15.33\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}31.11\\29.92\\27.43\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}55.45\\53.47\\48.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}98.84\\95.18\\86.99\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}176.1\\169.7\\155.0\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 140\\4\end{bmatrix}$.