Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.8\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.79\\0.28\\1.3\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.67\\0.525\\2.523\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.9403\\0.7581\\3.42\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.325\\1.042\\4.714\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.835\\1.444\\6.544\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}2.544\\2.004\\9.076\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}3.528\\2.779\\12.59\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}4.893\\3.854\\17.46\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}6.786\\5.344\\24.21\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}9.411\\7.412\\33.58\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\0.4\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.74\\0.43\\2.21\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.861\\0.707\\3.241\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.234\\0.9772\\4.41\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.716\\1.35\\6.115\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}2.378\\1.873\\8.484\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}3.298\\2.598\\11.77\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}4.574\\3.602\\16.32\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}6.343\\4.996\\22.63\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}8.797\\6.929\\31.39\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}12.2\\9.609\\43.53\end{matrix}\right]\end{gather*}
Hide help