For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\0.2\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.56\\2.49\\1.6\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.588\\5.135\\2.845\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.468\\9.79\\5.412\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.529\\18.59\\10.31\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}8.574\\35.34\\19.6\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}16.3\\67.17\\37.27\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}30.98\\127.7\\70.86\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}58.9\\242.8\\134.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}112.0\\461.5\\256.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}212.9\\877.4\\486.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.7\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.87\\4.71\\2.75\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.486\\9.218\\5.105\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.319\\17.54\\9.714\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.096\\33.32\\18.48\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}15.37\\63.34\\35.14\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}29.21\\120.4\\66.81\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}55.53\\228.9\\127.0\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}105.6\\435.2\\241.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}200.7\\827.3\\459.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}381.5\\1573.0\\872.7\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.