For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\0.5\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.75\\1.77\\1.54\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.675\\4.455\\2.974\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.219\\8.435\\5.177\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.79\\15.29\\9.176\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}19.01\\27.28\\16.26\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}33.65\\48.47\\28.82\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}59.62\\86.0\\51.11\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}105.7\\152.5\\90.62\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}187.4\\270.5\\160.7\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}332.3\\479.6\\284.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\0.1\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.49\\0.61\\0.44\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.883\\1.151\\0.714\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.502\\2.115\\1.276\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.644\\3.783\\2.257\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}4.673\\6.728\\4.002\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.28\\11.94\\7.096\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}14.68\\21.18\\12.58\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}26.02\\37.55\\22.31\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}46.14\\66.59\\39.56\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}81.81\\118.1\\70.14\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\4\end{bmatrix}$.