For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\1.1\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.25\\0.55\\4.9\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.785\\5.665\\5.5\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.737\\8.882\\11.98\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.928\\17.62\\20.35\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}8.789\\31.2\\37.66\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.92\\57.02\\67.6\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}28.78\\102.9\\122.7\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}52.09\\186.4\\221.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}94.24\\337.1\\401.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}170.5\\610.1\\726.3\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\2.0\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.78\\1.22\\3.9\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.37\\4.9\\4.73\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.258\\7.653\\10.01\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.121\\14.83\\17.17\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.39\\26.3\\31.66\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}13.4\\47.98\\56.92\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}24.22\\86.6\\103.2\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}43.84\\156.8\\186.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}79.32\\283.7\\337.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}143.5\\513.5\\611.3\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 180\\5\end{bmatrix}$.
Hide help