For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\0.1\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.75\\3.14\\0.5\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.251\\2.003\\0.978\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.169\\6.123\\1.442\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.038\\6.901\\2.435\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.296\\13.83\\3.762\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}16.74\\19.32\\6.13\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}24.86\\33.55\\9.665\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}41.52\\50.91\\15.55\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}64.5\\83.88\\24.71\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}104.7\\131.4\\39.56\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\0.5\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.13\\2.3\\0.66\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.673\\2.513\\0.95\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.444\\5.237\\1.417\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.313\\7.185\\2.303\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.281\\12.63\\3.621\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.6\\19.03\\5.831\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}24.14\\31.49\\9.258\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}39.29\\49.18\\14.83\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}61.98\\79.59\\23.63\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}99.68\\126.0\\37.76\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.