Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\2\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\0.3\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.75\\1.29\\0.78\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.081\\1.887\\1.992\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}10.9\\3.271\\3.407\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}19.11\\5.642\\6.038\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}33.49\\9.829\\10.58\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}58.62\\17.16\\18.54\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}102.6\\30.0\\32.44\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}179.5\\52.47\\56.76\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}313.9\\91.77\\99.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}549.2\\160.5\\173.7\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.7\\1.7\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.31\\2.05\\0.71\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.591\\2.681\\1.947\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}12.26\\4.117\\3.757\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}21.92\\6.783\\6.856\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}38.7\\11.57\\12.18\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}67.93\\20.04\\21.45\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}119.0\\34.92\\37.62\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}208.3\\60.98\\65.87\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}364.5\\106.6\\115.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}637.7\\186.4\\201.7\end{matrix}\right]\end{gather*}