Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\0.4\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.09\\1.52\\1.77\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.14\\2.612\\2.492\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.646\\4.156\\3.811\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.875\\6.585\\6.015\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.352\\10.45\\9.554\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}14.86\\16.61\\15.19\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}23.61\\26.4\\24.13\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}37.53\\41.95\\38.36\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}59.64\\66.67\\60.95\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}94.78\\106.0\\96.87\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\1.7\\0.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.06\\1.77\\1.19\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.626\\2.661\\2.339\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.877\\4.252\\3.886\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.081\\6.786\\6.213\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.654\\10.8\\9.875\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.35\\17.16\\15.69\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}24.39\\27.27\\24.93\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}38.76\\43.34\\39.62\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}61.6\\68.87\\62.97\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}97.9\\109.5\\100.1\end{matrix}\right]\end{gather*}