For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\0.8\\1.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.39\\4.24\\2.45\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.352\\8.292\\4.503\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}9.849\\15.64\\7.937\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}17.61\\28.39\\14.4\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}31.92\\51.51\\26.0\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}57.7\\93.21\\47.06\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}104.4\\168.7\\85.14\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}188.9\\305.2\\154.1\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}341.8\\552.3\\278.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}618.5\\999.4\\504.4\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.3\\0.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.8\\2.84\\1.03\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.499\\4.332\\2.292\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.013\\8.05\\3.949\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.825\\14.34\\7.276\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}16.12\\26.02\\13.1\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}29.09\\47.02\\23.75\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}52.68\\85.11\\42.94\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}95.29\\154.0\\77.72\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}172.4\\278.6\\140.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}312.0\\504.1\\254.4\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\3\end{bmatrix}$.