For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\1.1\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.97\\1.43\\2.17\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.079\\1.583\\2.711\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.118\\2.956\\6.935\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.236\\4.54\\10.6\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}14.72\\8.719\\21.79\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}29.09\\14.93\\36.67\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}49.96\\27.91\\69.94\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}93.89\\49.51\\122.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}166.4\\90.99\\227.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}306.3\\163.6\\407.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\0.1\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.21\\0.25\\0.61\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.777\\0.301\\0.643\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.9489\\0.6769\\1.734\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.262\\1.043\\2.496\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.47\\2.087\\5.296\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}7.034\\3.543\\8.712\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}11.89\\6.7\\16.85\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}22.58\\11.82\\29.33\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}39.76\\21.82\\54.63\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}73.49\\39.13\\97.39\end{matrix}\right]\end{gather*}
Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 160\\5\end{bmatrix}$.