Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 90\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.0\\0.5\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.84\\2.03\\2.73\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.288\\4.165\\5.075\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.363\\8.028\\9.634\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.478\\15.33\\18.35\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}8.528\\29.23\\34.98\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}16.25\\55.72\\66.68\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}30.98\\106.2\\127.1\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}59.06\\202.5\\242.3\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}112.6\\386.0\\461.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}214.6\\735.7\\880.5\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.2\\0.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.04\\1.5\\2.82\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.28\\3.842\\4.766\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.234\\7.491\\9.027\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.197\\14.34\\17.18\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.983\\27.35\\32.74\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.21\\52.15\\62.41\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}29.0\\99.41\\119.0\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}55.27\\189.5\\226.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}105.4\\361.2\\432.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}200.8\\688.6\\824.0\end{matrix}\right]\end{gather*}