Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\2\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\0.6\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.72\\1.19\\1.35\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.361\\1.497\\2.364\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.385\\2.359\\4.074\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.111\\3.969\\6.997\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.062\\6.781\\12.01\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}12.12\\11.63\\20.61\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}20.8\\19.95\\35.37\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}35.7\\34.23\\60.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}61.26\\58.74\\104.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}105.1\\100.8\\178.8\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.8\\0.5\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.49\\1.18\\2.47\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.494\\2.296\\4.216\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.256\\4.044\\7.227\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.294\\6.979\\12.4\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}12.51\\11.99\\21.28\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}21.47\\20.58\\36.51\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}36.85\\35.33\\62.65\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}63.23\\60.62\\107.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}108.5\\104.0\\184.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}186.2\\178.5\\316.6\end{matrix}\right]\end{gather*}