Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\3\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\0.4\\1.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.58\\1.7\\1.15\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.84\\2.575\\2.253\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.157\\4.667\\3.764\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.1\\7.979\\6.517\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}16.91\\13.77\\11.16\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}28.59\\23.62\\19.14\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}48.62\\40.51\\32.79\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}82.96\\69.44\\56.17\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}141.8\\119.0\\96.23\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}242.6\\203.8\\164.8\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\1.6\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.18\\1.85\\1.64\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.862\\3.385\\2.561\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.588\\5.534\\4.448\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.25\\9.44\\7.546\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.18\\16.04\\12.92\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}31.72\\27.39\\22.09\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}54.87\\46.83\\37.81\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}94.48\\80.12\\64.73\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}162.3\\137.2\\110.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}278.4\\234.8\\189.8\end{matrix}\right]\end{gather*}