Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\0.3\\1.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.1\\2.48\\1.84\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.472\\5.422\\3.126\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.804\\10.48\\5.612\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.994\\19.59\\10.26\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}16.66\\36.26\\18.86\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}30.74\\66.92\\34.73\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}56.69\\123.4\\64.0\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}104.5\\227.4\\117.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}192.6\\419.2\\217.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}354.9\\772.6\\400.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\1.8\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.66\\3.62\\1.82\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.024\\6.578\\3.378\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.548\\12.07\\6.241\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.21\\22.22\\11.51\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.81\\40.94\\21.22\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}34.66\\75.45\\39.11\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}63.88\\139.0\\72.09\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}117.7\\256.3\\132.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}217.0\\472.3\\244.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}399.9\\870.4\\451.3\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\2\end{bmatrix}$.