For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\1.9\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.83\\3.54\\0.75\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.05\\6.546\\1.512\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}9.23\\12.09\\2.871\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}17.0\\22.35\\5.351\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}31.39\\41.3\\9.915\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}57.98\\76.32\\18.34\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}107.1\\141.0\\33.9\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}198.0\\260.7\\62.65\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}365.9\\481.7\\115.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}676.3\\890.3\\214.0\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\0.6\\1.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.26\\2.38\\0.84\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.954\\4.884\\1.218\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.127\\9.208\\2.196\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.05\\17.08\\4.08\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}24.04\\31.59\\7.573\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}44.38\\58.39\\14.02\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}81.98\\107.9\\25.93\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}151.5\\199.4\\47.93\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}280.0\\368.6\\88.59\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}517.4\\681.1\\163.7\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 140\\5\end{bmatrix}$.