For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.5\\1.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.1\\2.72\\3.33\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.713\\3.086\\5.357\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.33\\5.744\\7.284\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.106\\8.825\\12.39\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}10.17\\13.44\\19.13\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.75\\21.52\\29.64\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}24.47\\33.48\\46.9\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}38.62\\52.37\\73.18\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}60.33\\82.23\\114.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}94.47\\128.6\\179.7\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\1.9\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.45\\1.78\\3.32\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.547\\2.179\\3.713\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.072\\4.723\\5.438\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.586\\6.499\\9.779\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.954\\10.26\\14.32\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}11.85\\16.53\\22.63\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}18.68\\25.39\\35.86\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}29.51\\39.97\\55.65\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}45.9\\62.71\\87.41\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}72.04\\97.99\\137.0\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\4\end{bmatrix}$.