For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\0.6\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.79\\0.86\\1.32\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.85\\2.198\\2.728\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.013\\4.585\\5.594\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.48\\9.409\\11.53\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}25.72\\19.39\\23.77\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}53.0\\39.96\\48.98\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}109.2\\82.37\\101.0\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}225.2\\169.8\\208.1\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}464.1\\349.9\\428.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}956.6\\721.3\\884.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\1.7\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.08\\0.97\\1.69\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.82\\2.801\\3.611\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.859\\6.058\\7.382\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}16.45\\12.42\\15.2\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}33.92\\25.56\\31.34\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}69.89\\52.69\\64.59\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}144.0\\108.6\\133.1\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}296.9\\223.9\\274.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}612.0\\461.4\\565.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}1261.0\\951.1\\1166.0\end{matrix}\right]\end{gather*}
Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 100\\5\end{bmatrix}$.