Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\3\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.6\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.19\\3.11\\1.18\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.64\\4.113\\2.521\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.251\\7.317\\4.987\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.26\\14.0\\9.733\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}19.98\\27.15\\18.95\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}38.88\\52.81\\36.88\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}75.66\\102.8\\71.77\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}147.2\\200.0\\139.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}286.5\\389.1\\271.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}557.5\\757.2\\528.8\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\0.5\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.71\\1.15\\0.68\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.422\\1.997\\1.351\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.781\\3.801\\2.639\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.417\\7.366\\5.139\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}10.54\\14.32\\10.0\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}20.52\\27.87\\19.46\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}39.93\\54.23\\37.87\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}77.69\\105.5\\73.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}151.2\\205.3\\143.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}294.2\\399.6\\279.1\end{matrix}\right]\end{gather*}