For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.9\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.92\\4.07\\0.55\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.506\\3.336\\2.05\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.983\\9.038\\2.915\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.28\\16.13\\5.962\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}21.48\\30.39\\11.16\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}40.38\\57.65\\21.0\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}76.26\\108.6\\39.7\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}143.9\\204.9\\74.87\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}271.5\\386.7\\141.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}512.4\\729.8\\266.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\1.8\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}4.46\\3.34\\2.01\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.112\\10.93\\2.988\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}12.56\\17.0\\6.775\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}23.55\\33.6\\12.12\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}44.26\\63.24\\23.07\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}83.71\\119.0\\43.56\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}157.9\\224.9\\82.12\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}297.9\\424.3\\155.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}562.2\\800.6\\292.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}1061.0\\1511.0\\552.0\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\5\end{bmatrix}$.