Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\0.9\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.57\\1.41\\1.89\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.861\\1.902\\3.15\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.337\\2.893\\4.955\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.082\\4.493\\7.734\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.246\\7.0\\12.06\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}5.059\\10.91\\18.79\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}7.885\\17.01\\29.29\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}12.29\\26.51\\45.66\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}19.16\\41.31\\71.17\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}29.86\\64.39\\110.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.8\\1.6\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.76\\1.94\\2.46\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.142\\2.536\\4.164\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.772\\3.837\\6.564\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.759\\5.955\\10.25\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}4.301\\9.276\\15.98\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}6.703\\14.46\\24.9\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}10.45\\22.53\\38.82\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}16.29\\35.12\\60.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}25.38\\54.74\\94.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}39.56\\85.33\\147.0\end{matrix}\right]\end{gather*}