Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 100\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\1.0\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.6\\0.58\\0.78\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.104\\0.846\\1.342\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.842\\1.511\\2.449\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.93\\2.789\\4.541\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}20.42\\5.19\\8.459\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}38.13\\9.679\\15.78\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}71.2\\18.06\\29.46\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}132.9\\33.72\\54.99\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}248.2\\62.95\\102.7\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}463.3\\117.5\\191.7\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\2.0\\1.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.28\\1.1\\1.41\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.652\\1.412\\2.181\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}8.88\\2.38\\3.824\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}16.69\\4.308\\6.993\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}31.23\\7.965\\12.97\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}58.33\\14.82\\24.16\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}108.9\\27.65\\45.08\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}203.4\\51.6\\84.14\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}379.7\\96.32\\157.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}708.9\\179.8\\293.3\end{matrix}\right]\end{gather*}
Hide help