For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\0.1\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.24\\0.08\\1.84\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.152\\0.768\\4.196\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.458\\1.986\\7.449\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.937\\3.774\\13.82\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}12.3\\7.038\\27.45\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}23.91\\13.79\\55.12\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}46.72\\27.56\\109.6\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}92.5\\54.88\\217.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}183.8\\108.7\\429.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}364.5\\215.3\\851.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.0\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.16\\0.68\\2.64\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.488\\1.328\\3.972\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.846\\2.12\\7.628\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.317\\3.899\\15.89\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}13.65\\7.916\\32.15\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}26.75\\16.03\\63.55\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}53.46\\31.83\\125.4\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}106.4\\62.87\\248.2\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}210.9\\124.4\\492.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}417.5\\246.6\\975.5\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 90\\2\end{bmatrix}$.