Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\1.5\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}5.25\\0.76\\4.8\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}9.004\\0.784\\8.551\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}14.68\\1.169\\14.22\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}23.92\\1.889\\23.33\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}39.06\\3.089\\38.2\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}63.85\\5.055\\62.5\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}104.4\\8.272\\102.2\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}170.8\\13.53\\167.3\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}279.5\\22.14\\273.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}457.1\\36.22\\447.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\0.2\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.59\\0.27\\2.93\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.636\\0.401\\4.725\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.778\\0.6329\\7.702\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.82\\1.023\\12.59\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}21.01\\1.668\\20.59\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}34.39\\2.726\\33.68\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}56.27\\4.458\\55.09\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}92.05\\7.293\\90.13\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}150.6\\11.93\\147.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}246.3\\19.52\\241.2\end{matrix}\right]\end{gather*}