For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\0.4\\0.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.48\\1.16\\0.72\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.272\\2.324\\1.424\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.919\\4.43\\2.703\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.093\\8.308\\5.063\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}13.07\\15.5\\9.442\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}24.23\\28.86\\17.58\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}45.03\\53.71\\32.71\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}83.74\\99.93\\60.86\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}155.8\\185.9\\113.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}289.8\\345.9\\210.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\1.9\\1.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.0\\3.75\\2.28\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.715\\6.93\\4.218\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}10.72\\12.86\\7.832\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}19.99\\23.91\\14.56\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}37.23\\44.47\\27.08\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}69.28\\82.72\\50.37\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}128.9\\153.9\\93.71\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}239.8\\286.3\\174.3\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}446.1\\532.5\\324.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}829.9\\990.7\\603.3\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.