For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\0.1\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.72\\0.49\\0.36\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.18\\0.991\\0.68\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.262\\1.864\\1.301\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.277\\3.544\\2.464\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}8.12\\6.72\\4.676\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.4\\12.75\\8.871\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}29.22\\24.19\\16.83\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}55.45\\45.9\\31.93\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}105.2\\87.08\\60.58\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}199.6\\165.2\\114.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\0.4\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.84\\2.74\\1.32\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.516\\4.054\\3.088\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}9.619\\8.198\\5.582\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}18.64\\15.32\\10.72\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}35.19\\29.18\\20.27\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}66.84\\55.3\\38.49\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}126.8\\104.9\\73.01\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}240.5\\199.1\\138.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}456.3\\377.7\\262.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}865.8\\716.7\\498.6\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\4\end{bmatrix}$.