For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\1.9\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}4.9\\0.91\\0.81\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}7.782\\1.229\\1.547\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}12.36\\2.139\\2.639\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}20.04\\3.561\\4.32\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}32.64\\5.816\\7.031\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}53.18\\9.47\\11.45\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}86.63\\15.42\\18.65\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}141.1\\25.13\\30.38\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}229.9\\40.93\\49.49\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}374.4\\66.67\\80.61\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\1.6\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.14\\0.62\\0.47\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.982\\0.752\\0.957\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.838\\1.339\\1.666\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.68\\2.251\\2.734\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}20.65\\3.68\\4.449\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}33.64\\5.992\\7.244\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}54.81\\9.759\\11.8\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}89.28\\15.9\\19.22\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}145.4\\25.9\\31.31\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}236.9\\42.18\\51.01\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\4\end{bmatrix}$.