Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 90\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\1.4\\0.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.28\\3.48\\2.94\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.014\\7.166\\5.848\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.629\\13.39\\10.59\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.641\\24.46\\19.19\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}12.12\\44.57\\34.92\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}22.1\\81.2\\63.62\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}40.29\\148.0\\115.9\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}73.42\\269.7\\211.3\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}133.8\\491.5\\385.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}243.9\\895.7\\701.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\1.6\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.44\\4.15\\3.56\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.338\\8.43\\6.855\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.242\\15.67\\12.37\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.765\\28.6\\22.42\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}14.17\\52.09\\40.81\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}25.84\\94.92\\74.37\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}47.09\\173.0\\135.5\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}85.83\\315.3\\247.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}156.4\\574.5\\450.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}285.1\\1047.0\\820.5\end{matrix}\right]\end{gather*}