Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\1.2\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.64\\0.78\\1.5\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.516\\1.068\\4.794\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.735\\1.717\\7.512\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.878\\2.557\\10.62\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}10.1\\3.716\\15.33\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}14.77\\5.412\\22.4\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}21.56\\7.901\\32.74\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}31.47\\11.54\\47.81\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}45.94\\16.84\\69.79\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}67.07\\24.59\\101.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\0.9\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.1\\0.58\\1.21\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.724\\0.831\\3.808\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.675\\1.341\\5.859\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.354\\1.991\\8.258\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.868\\2.892\\11.93\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}11.5\\4.213\\17.44\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}16.78\\6.151\\25.49\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}24.5\\8.981\\37.22\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}35.76\\13.11\\54.33\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}52.21\\19.14\\79.31\end{matrix}\right]\end{gather*}
Hide help