For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.1\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.27\\1.43\\2.35\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.568\\2.84\\4.966\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}10.5\\5.667\\8.963\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}20.24\\10.87\\16.83\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}38.78\\20.71\\32.26\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}74.11\\39.57\\61.78\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}141.6\\75.65\\118.1\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}270.7\\144.6\\225.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}517.5\\276.4\\431.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}989.3\\528.4\\824.8\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\1.8\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}4.46\\2.69\\2.35\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}8.669\\4.345\\6.653\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}15.89\\8.308\\13.5\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}30.12\\16.13\\25.37\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}57.73\\30.9\\48.12\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}110.5\\59.01\\92.02\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}211.1\\112.8\\176.0\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}403.6\\215.6\\336.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}771.5\\412.1\\643.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}1475.0\\787.7\\1230.0\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 90\\2\end{bmatrix}$.