For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.8\\0.4\\1.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.48\\1.69\\1.6\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.997\\3.277\\2.089\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}8.643\\5.517\\2.835\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.94\\8.767\\3.953\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}21.67\\13.52\\5.62\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}33.01\\20.49\\8.096\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}49.67\\30.73\\11.76\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}74.18\\45.82\\17.19\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}110.3\\68.05\\25.21\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}163.5\\100.8\\37.06\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\0.9\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.67\\1.73\\1.05\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.528\\2.878\\1.433\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.234\\4.54\\2.007\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.19\\6.97\\2.863\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}16.99\\10.54\\4.132\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}25.52\\15.78\\6.013\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}38.07\\23.51\\8.794\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}56.58\\34.9\\12.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}83.85\\51.69\\18.97\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}124.1\\76.46\\27.94\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 140\\5\end{bmatrix}$.