Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 100\\3\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\1.0\\1.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.72\\1.17\\2.41\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.641\\2.361\\4.523\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.279\\4.662\\8.753\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}14.34\\9.153\\17.09\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}28.13\\17.94\\33.44\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}55.13\\35.15\\65.49\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}108.0\\68.86\\128.3\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}211.6\\134.9\\251.3\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}414.4\\264.2\\492.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}811.8\\517.6\\964.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\2.0\\0.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.82\\1.69\\2.81\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.125\\3.209\\5.795\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}9.823\\6.231\\11.51\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}19.13\\12.18\\22.63\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}37.4\\23.84\\44.37\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}73.23\\46.68\\86.95\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}143.4\\91.44\\170.3\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}281.0\\179.1\\333.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}550.3\\350.9\\653.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}1078.0\\687.3\\1280.0\end{matrix}\right]\end{gather*}