Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.0\\0.1\\0.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.05\\1.67\\1.47\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.364\\3.897\\3.168\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.07\\7.498\\6.018\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.422\\13.65\\10.94\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.881\\24.39\\19.55\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}10.28\\43.29\\34.71\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}18.07\\76.61\\61.44\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}31.88\\135.5\\108.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}56.29\\239.4\\192.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}99.43\\423.1\\339.3\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.0\\1.4\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.26\\3.4\\2.74\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.874\\6.616\\5.294\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.065\\12.1\\9.682\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.243\\21.65\\17.34\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.142\\38.44\\30.82\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}16.07\\68.05\\54.57\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}28.33\\120.3\\96.51\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}50.02\\212.7\\170.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}88.34\\375.9\\301.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}156.1\\664.2\\532.7\end{matrix}\right]\end{gather*}