Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\3\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\0.6\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.11\\1.02\\4.45\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.459\\1.734\\6.705\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.692\\2.948\\11.06\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.491\\5.011\\18.39\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}15.95\\8.519\\30.84\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}26.92\\14.48\\52.02\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}45.56\\24.62\\88.0\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}77.26\\41.85\\149.2\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}131.1\\71.15\\253.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}222.7\\121.0\\429.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.6\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.11\\1.02\\2.01\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.415\\1.734\\4.461\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.632\\2.948\\8.744\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.412\\5.011\\16.03\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}14.85\\8.519\\28.45\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}25.8\\14.48\\49.58\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}44.42\\24.62\\85.52\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}76.1\\41.85\\146.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}130.0\\71.15\\250.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}221.5\\121.0\\427.3\end{matrix}\right]\end{gather*}