For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\0.1\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.18\\1.17\\3.73\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.72\\1.911\\4.379\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.219\\2.82\\6.591\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.814\\4.279\\10.13\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}2.749\\6.512\\15.4\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}4.182\\9.901\\23.4\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}6.359\\15.05\\35.58\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}9.667\\22.89\\54.09\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}14.7\\34.79\\82.24\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}22.35\\52.9\\125.0\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.8\\1.5\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.98\\1.33\\2.95\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.896\\2.173\\5.419\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.393\\3.378\\7.993\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.166\\5.121\\12.08\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.289\\7.78\\18.39\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}4.997\\11.83\\27.96\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}7.597\\17.99\\42.51\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}11.55\\27.34\\64.63\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}17.56\\41.57\\98.26\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}26.7\\63.2\\149.4\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\4\end{bmatrix}$.