For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.1\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.66\\0.25\\1.72\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.711\\0.764\\1.009\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.769\\0.9688\\2.445\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.752\\1.758\\3.636\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.924\\2.868\\6.327\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}13.31\\4.849\\10.48\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}22.31\\8.108\\17.64\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}37.42\\13.61\\29.54\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}62.73\\22.81\\49.56\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}105.2\\38.25\\83.08\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.1\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.54\\0.83\\1.56\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.989\\1.396\\3.179\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.675\\2.43\\5.204\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}11.16\\4.05\\8.838\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.72\\6.809\\14.77\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}31.38\\11.41\\24.79\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}52.62\\19.13\\41.56\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}88.23\\32.08\\69.69\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}147.9\\53.79\\116.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}248.1\\90.2\\195.9\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\5\end{bmatrix}$.