Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.0\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}4.86\\1.22\\2.54\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}7.954\\2.554\\3.948\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}12.91\\4.459\\6.914\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}21.88\\7.392\\11.79\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}37.13\\12.45\\19.85\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}62.73\\21.08\\33.51\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}106.0\\35.63\\56.65\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}179.1\\60.2\\95.75\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}302.6\\101.7\\161.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}511.4\\171.9\\273.4\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\1.6\\1.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.43\\1.48\\2.61\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}7.169\\2.112\\3.814\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}11.97\\3.924\\6.17\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}19.82\\6.748\\10.6\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}33.53\\11.3\\17.99\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}56.78\\19.06\\30.36\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}95.94\\32.24\\51.27\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}162.1\\54.5\\86.66\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}273.9\\92.08\\146.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}462.9\\155.6\\247.5\end{matrix}\right]\end{gather*}
Hide help