Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\0.0\\1.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.68\\5.98\\1.9\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.898\\13.37\\3.224\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.9\\23.98\\5.663\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.322\\40.61\\9.807\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}15.16\\67.8\\16.71\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}25.03\\113.0\\28.2\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}41.63\\188.4\\47.32\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}69.45\\314.4\\79.21\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}116.0\\525.1\\132.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}193.8\\877.3\\221.4\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\1.5\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.14\\5.17\\0.64\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.674\\9.504\\1.649\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.766\\15.75\\3.299\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.792\\25.74\\5.958\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.35\\42.31\\10.29\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.43\\70.03\\17.42\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}25.68\\116.5\\29.25\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}42.87\\194.3\\48.96\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}71.63\\324.4\\81.85\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}119.7\\541.9\\136.8\end{matrix}\right]\end{gather*}
Hide help